On Unicyclic Reflexive Graphs
نویسنده
چکیده
If G is a simple graph (a non-oriented graph without loops or multiple edges), its (0, 1)-adjacency matrix A is symmetric and roots of the characteristic polynomial PG (λ) = det (λI −A) (the eigenvalues of G, making up its spectrum) are all real numbers, for which we assume their non-increasing order: λ1 ≥ λ2 ≥ · · · ≥ λn. In a connected graph for the largest eigenvalue λ1 (the index of the graph) λ1 > λ2 holds, which need not take place otherwise, since the spectrum of a disconnected graph is the union of spectra of its components. The interrelation between the spectra of a graph and its induced subgraphs is established by the interlacing theorem: Let λ1 ≥ λ2 ≥ · · · ≥ λn be the eigenvalues of a graph G and μ1 ≥ μ2 ≥ ... ≥ μm eigenvalues of its induced subgraph H. Then the inequalities λn−m+i ≤ μi ≤ λi (i = 1, . . . ,m) hold. Thus e.g. if m = n − 1, λ1 ≥ μ1 ≥ λ2 ≥ μ2, . . ., and also λ1 > μ1 if G is connected. Reflexive graphs are graphs having λ2 ≤ 2. They correspond to some sets of vectors in the Lorentz space R and have some applications to the construction and classification of reflection groups [7]. Reflexive graphs that have been investigated so far are trees [4], [6], some classes of bicyclic graphs [10], [13] (see also [8]) and various classes of cactuses with more than two cycles [5], [9], [11], [12].
منابع مشابه
On the Eccentric Connectivity Index of Unicyclic Graphs
In this paper, we obtain the upper and lower bounds on the eccen- tricity connectivity index of unicyclic graphs with perfect matchings. Also we give some lower bounds on the eccentric connectivity index of unicyclic graphs with given matching numbers.
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملThe Signless Laplacian Estrada Index of Unicyclic Graphs
For a simple graph $G$, the signless Laplacian Estrada index is defined as $SLEE(G)=sum^{n}_{i=1}e^{q^{}_i}$, where $q^{}_1, q^{}_2, dots, q^{}_n$ are the eigenvalues of the signless Laplacian matrix of $G$. In this paper, we first characterize the unicyclic graphs with the first two largest and smallest $SLEE$'s and then determine the unique unicyclic graph with maximum $SLEE$ a...
متن کاملThe second geometric-arithmetic index for trees and unicyclic graphs
Let $G$ be a finite and simple graph with edge set $E(G)$. The second geometric-arithmetic index is defined as $GA_2(G)=sum_{uvin E(G)}frac{2sqrt{n_un_v}}{n_u+n_v}$, where $n_u$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$. In this paper we find a sharp upper bound for $GA_2(T)$, where $T$ is tree, in terms of the order and maximum degree o...
متن کاملOn the revised edge-Szeged index of graphs
The revised edge-Szeged index of a connected graph $G$ is defined as Sze*(G)=∑e=uv∊E(G)( (mu(e|G)+(m0(e|G)/2)(mv(e|G)+(m0(e|G)/2) ), where mu(e|G), mv(e|G) and m0(e|G) are, respectively, the number of edges of G lying closer to vertex u than to vertex v, the number of ed...
متن کاملOn Harmonic Index and Diameter of Unicyclic Graphs
The Harmonic index $ H(G) $ of a graph $ G $ is defined as the sum of the weights $ dfrac{2}{d(u)+d(v)} $ of all edges $ uv $ of $G$, where $d(u)$ denotes the degree of the vertex $u$ in $G$. In this work, we prove the conjecture $dfrac{H(G)}{D(G)} geq dfrac{1}{2}+dfrac{1}{3(n-1)} $ given by Jianxi Liu in 2013 when G is a unicyclic graph and give a better bound $ dfrac{H(G)}{D(G)}geq dfra...
متن کامل